
Functional paradigms in LISP and its contribution
to reliable, maintainable software

Luka Dekanozishvili

Abstract—This paper explores the work of John McCarthy
on the LISP programming language [1] and focuses on its
underlying functional paradigms, its everlasting influence today,
and its application in modern programming. The central re-
search question is: In what way do the functional programming
paradigms introduced in LISP contribute to the development of
more reliable and maintainable software?

A major challenge in modern-day software development is
ensuring correctness and a lack of runtime issues. As programs
grow in complexity, stateful monolithic functions with mutable
states become harder to properly test. This leads to untested
and unreliable programs, which are difficult to validate. LISP
introduced key concepts, such as recursion, immutability, and
functions as first-class citizens, that offer promising solutions to
these issues.

We will explore through logical reasoning how LISP’s func-
tional design allows for a more predictable program execution,
supports testing philosophies, and how its modularity aids in
collaborative development. Although empirical studies on this
topic are still emerging, theoretical and practical evidence suggest
its usefulness in modern software development.

Index Terms—LISP, functional programming paradigms, pu-
rity, testability, modularity

I. INTRODUCTION AND MOTIVATION

The LISP (LISt Processor) language, as described by John
McCarthy, operates on singly linked lists, which is a famously
recursive data structure. This allows for defining purely recur-
sive functions elegantly through mathematical notation, which
is the basis of functional programming (FP). By defining a
myriad of primitive functions using a simple syntax, passing
functions as arguments becomes a natural part of the language
since functions are treated as first-class citizens.

Although McCarthy originally intended LISP to only be a
formalism for doing recursive function theory, the practical
applications of LISP as a programming language were later
realized [2].

Today, Lisp is a family of languages with many dialects.
Common Lisp is multi-paradigm, while Clojure focuses on
FP.

It is worth noting that most Lisps including John Mc-
Carthy’s LISP are mutable languages, with exceptions like
Clojure, which encourages immutability. Enforcing immutabil-
ity is in many cases optional, but it comes with benefits, as
discussed in the next section.

This paper argues about the benefits of enforcing the
aforementioned restrictions, and using functional paradigms
to benefit the development process.

II. MAIN CONTENT

A. Functional paradigms

The book “Programming Languages: Principles and
Paradigms” states a common misconception among beginner
software developers that designing and writing efficient pro-
grams is the most important task of the job [3]. In practice,
incorrect, unreadable, and hard to maintain software accounts
to over fifty percent of the project costs. Tremendous resources
could be saved if the focus were shifted to readability, reliabil-
ity and correctness, but the reality shows that most businesses
favor rapid development and software that just works in the
present. Programmers who care about software quality often
make compromises in order to meet deadlines, as stated by
Austin [4].

When software developers are rewarded based on their per-
formance and not the contribution to the software ecosystem,
it’s no wonder the software becomes unreliable and unmain-
tainable at later stages, often requiring complete rewrites in
different programming languages.

By shifting the underlying paradigms to FP, the focus of
the development can be shifted to producing high-quality,
maintainable, and reusable software, as discussed in this paper.

Elm is a Lisp focusing on responsive GUI creation that
enforces immutability, and referentially transparent and pure
functions [5]. If the user makes semantic mistakes in Elm,
compile-time errors are presented in all the places, so program-
ming becomes more methodical and step-by-step. Because of
what the language restricts, no runtime errors can ever occur
because the program will throw compile-time errors instead.

Languages and tools like Elm reward a non-rushed, me-
thodical development process that pays out in the long term
because runtime errors can be mitigated and further guarantees
about the program execution can be made.

B. The influence on modern programming

Type systems, generics, polymorphism, and type safety all
originated from FP since it’s easier to reason about in a side-
effect-free environment [3]. These are crucial concepts that
modern languages embrace - there is a reason why TypeScript



with its type system is generally preferred over JavaScript in
web development.

Another well-known example for the benefits of a strict type
system is Rust. Since type-mismatch errors are non-existent,
logical mistakes have to be fixed before the program is even
ran. Because of this, the formal verification of Rust programs
is simpler than other imperative languages with looser types,
and can be done using tools like the Prusti verifier [6].

Furthermore, Python allows optional types for variables and
function signatures. By choosing to add types, the developer
gets rewarded with improved suggestions, and is made aware
of mismatched-type errors while programming. This results in
a better programming experience.

C. Acknowledgment about FP’s difficulty

Because learning and mastering FP requires a fundamentally
different approach, they are seen as more difficult by the
unfamiliar developer. This is why FP languages are often not
the first choice for projects. Some people claim that FP or
Lisps are “only useful for academics” since they were created
for mathematical formalism, and are widely used in the field,
but this statement is untrue since functional paradigms and
Lisps have been widely adopted in the software development
ecosystem, and have proven to be useful.

One example of this would be Emacs Lisp, which is used
for configuring Emacs, a family of text editors [7].

Another example is the functional high-level language Er-
lang, developed by Ericsson, which was developed for tele-
phony switches. It was also used in 3G, LTE networks as well
as by Nortel and Deutsche Telekom [8]. Erlang is distributed,
fault-tolerant, real-time, and is still widely used to this date.

D. Benefits of modularity

Khanfor et al. highlight how FP encourages program reuse
through higher-order functions like map and fold, as stated
by Wadler [9], [10]. Wadler also mentions that reuse in
FP is often “invisible” since it is an inherent part of the
language design. They also refer to Hughes et al., according
to whom functional developers claim increased productivity
due to concise functions, because conventional (imperative)
programs consist of “90% assignment statements” [11].

The authors of “Is functional programming better for mod-
ularity?” examine the often implied hypothesis that functional
programming is inherently superior in supporting modularity
than other paradigms such as procedural and object-oriented
programming. This conclusion was indirectly drawn from
Hughes’ work [12], who asserts that modularity is essential
to successful programming and that any language aiming to
improve productivity should support modularity well [11].

E. Improved testability

Testing in software development, especially in imperative
programming, is often neglected since it is difficult to model
large, monolithic, stateful programs. Because of the lack of
tests, no guarantees about execution can be made every time
a part of the program changes.

Even though the same testing methodologies are available
to imperative languages, Lisps provide a couple of advantages:

1) Functions in pure Lisps are referentially transparent -
given the same input, the output is deterministic (this is
the definition of purity). This simplifies writing unit tests
and ensures software reliability since unexpected errors and
inconsistent return values are mitigated.

Here is an example of an impure and pure function in
Python:

1 # Variable declared globally
2 interest_rate = 1.1
3

4 # Implementation
5 def apply_interest(user):
6 user.money_owed *= interest_rate
7 user.save()
8

9 # Usage
10 apply_interest(user)
11

12 # Unit test
13 user = User.objects.create(money_owed=100)
14 apply_interest(user)
15 assert_equals(user.money_owed, 110)

Listing 1. Impure function in Django, Python’s web framework.

1 # Variable declared globally
2 interest_rate = 1.1
3

4 # Implementation
5 def calculate_interest(money_owed, interest_rate):
6 return money_owed * interest_rate
7

8 # Usage
9 user.money_owed = calculate_interest(

10 user.money_owed,
11 interest_rate
12 )
13

14 # Unit test
15 assert_equals(calculate_interest(100, 1.1), 110)

Listing 2. Pure function in Python.

In the impure example, the function mutates a global object
and relies on a global variable interest_rate. Because of
this, writing the unit test required setting up a database object,
increasing test complexity. If the interest_rate changes,
the test will fail since it relies on external state, and is impure.

Even though the return values are hard-coded in both unit
tests, only the impure implementation’s unit test will fail if
interest_rate is changed since the pure example’s test
is self-contained. Namely, the pure example explicitly takes
the previously declared state as an argument.

Failing unit tests for trivial reasons might cause frustration.
Hard to implement unit tests might cause neglect to writing
them.

This is however an oversimplified example. It is e.g. neces-
sary to write impure or non-referentially transparent functions
when dealing with databases, and the entire program need not
be pure. Side effects can be isolated though, and pure functions
can still be tested effectively.

2) While “black box” methodologies can be used for
checking the inputs and outputs with unit tests, verifying the



models requires consistently simulating the internal state of the
functions, which is more difficult with imperative languages.
Namely, variables need to be set up in advance and impure
internal functions need to be mocked. The functional parts of
the program are ignored, which are crucial for the design and
implementation, as argued by Howden [13].

If FP principles are followed, verifying models is simple
since referentially transparent functions can be written as
values, thus modeled more effectively.

This supports test-driven development (TDD), and thus
encourages continuous refactoring without fear that the cor-
rectness might be violated. For example, “LIFT - The LIsp
Framework for Testing” describes a testing suite for Lisps that
supports hierarchical and regression tests [14].

Testing is particularly important since writing tests along-
side the main program accelerates the development, as func-
tions are debugged while they are being implemented. Buchan
et al. report that empirical studies demonstrate increased confi-
dence in the product and, although subjective, a higher quality
codebase through TDD, despite skepticism from developers in
the beginning [15].

While TDD principles can also be applied to imperative
languages, and the same tooling is available, it is often
neglected if the program becomes too large to test efficiently.

F. Examples

Run-length encoding (RLE) is a technique used in lossless
data compression to reduce file size by utilizing repetition. In
RLE, consecutive occurrences of the same data are stored as
a single instance of said data along with a count of the con-
secutive occurrences. For example, rle(”aaaBxxxxkk”) =
”3a1B4x2k”.

Below are examples of RLE’s implementations using dif-
ferent paradigms.

1 def rle(string):
2 output = ’’
3 count = 1
4

5 for i in range(1, len(string)):
6 if string[i] == string[i-1]:
7 count += 1
8 else:
9 output += str(count) + string[i-1]

10 count = 1
11

12 output += str(count) + string[-1]
13

14 return output

Listing 3. RLE in Python using imperative paradigms [16].

1 rle = map (head &&& length) . group

Listing 4. RLE in Haskell using functional paradigms.

The first listing contains many indices and array access op-
erations. Because of this, it is prone to off-by-one errors. The
second listing utilizes higher-order and high-level functions,
and is much easier to grasp once you know what each function
does.

Furthermore, if the functional implementation has bugs, it
will be because of a major logical flaw and not because of

a few untested inputs. This is a good thing since we want to
know as soon as possible if the program is not correct. The
absence of indices and numbers intuitively supports this case.

Whereas in the imperative implementation it is possible
a single incorrect index will produce unwanted results only
for specific inputs. Guaranteeing this will not happen requires
formal step-by-step verification.

Though it is worth noting for this example that the return
value of the two listings differ, as the second returns a list of
tuples, and not a string.

An important distinction has to be made here: paradigms are
not limited to languages. The following shows a functionally
equivalent program in Python using functional paradigms:

1 def rle(s):
2 return list(map(lambda g:
3 (g[0], len(list(g[1]))), groupby(s)))

Listing 5. RLE in Python using functional paradigms.

III. DISCUSSION

Functional programming is not the most common paradigm
for early-stage startups. Their most common requirements are
rapid development, and release of new features as well as ease
of hiring engineers. Since functional programming is not the
most popular paradigm, most job-seeking software developers
focus on what is in demand, i.e,. imperative programming,
thus it is harder to find many good FP engineers fast.

However, a lot of late-stage startups opt in for a complete
rewrite if technical dept piles up as a result of rushing, and
adding in new features or making changes causes breakage,
instability, or takes too much time. This is where we think FP
shines. As discussed in the previous section, FP offers many
advantages that safeguard the program execution, and allows
for safer refactoring. In a lot of cases, this is what the late-
stage startups are looking for since downtime or crashes in
production directly translate to loss of revenue.

Scala is a type-safe functional language that runs on the
Java Virtual Machine (JVM), and focuses on scalability. Its
key features include multi-paradigm abilities, so allowing to
program imperatively when necessary, and thus enabling teams
to slowly implement a paradigm shift. It is often a desirable
language for rewrites, as was the case for Twitter. Eriksen
reports about the motives behind choosing Scala, as well
as the team’s experience [17]. Namely, Scala’s functional
systems design, avoiding mutable state, how using a “research
language” turned out in practice. According to Eriksen, the
team had no prior experience with Scala or the JVM, but this
did not turn out to be a challenge.

OCaml is a statically typed functional language that catches
bugs at compile-time. Jane Street Capital, a trading company,
has adopted OCaml as its primary development language.
In “Caml trading - experiences with functional programming
on Wall Street” Minsky and Weeks discuss how OCaml
helps them produce readable, correct, efficient, and adaptable
programs rapidly, and how it gives them an advantage over
competitors using imperative languages [18].



IV. ACKNOWLEDGMENTS

We did not discuss object-oriented paradigms (OOP) in this
paper due to time constraints, and since the research question
is scoped around Lisps and FP. However many observations
made in this paper may also apply to OOP in contrast with
FP, and future work could explore this further.

Despite a lot of research being FP-centric, finding solid
empirical evidence in industrial and enterprise contexts proved
to be challenging. Due to a limited availability of published
enterprise data, we relied on logical reasoning where empirical
validation was unavailable.

While our presented research is FP-centric, our focus is not
to dismiss imperative programming and its practicality. FP is
not a universal solution, and both paradigms can have different
purposes as well as be used simultaneously like in a codebase
in Scala. During the evaluation and discussion we tried to
maintain an objective view.

That being said, we believe FP is underrepresented outside
of research, and its adoption could provide tangible benefits
in a general-purpose programming environment.

V. RELATED WORK

“The Mechanical Evaluation of Expressions” describes how
forms of expression from programming languages can be mod-
eled using Church’s λ-notation, a formalism also referenced
by McCarthy [19], [20]. Many of Landin’s ideas originate
from the works of McCarthy, Church, Curry and the authors
of ALGOL 60. However, his paper offers a more gradual
introduction to expressing computer algorithms through a
similar formal notation.

“Functional Program Testing” presents and describes a
testing concept in detail that has added benefits over the widely
known black-box unit testing and structural testing because of
its implementation [13]. In a collection of scientific programs,
this method was able to more reliably identify implementation
mistakes. It’s noteworthy that this method requires a deep
understanding of the program which is not necessary for
structural testing. Though, as the author states, these methods
are complementary and do not rule each other out.

The chapter Functional Programming Paradigm from “Pro-
gramming Languages: Principles and Paradigms” introduces
FP and how it works by explaining its core concepts [3]. The
main focus includes the pure paradigm, “real” languages in
practice, as well as Lambda calculus. This is a good entry
point into the theory of FP because many parallels are drawn to
other paradigms, and comparisons with examples are plentiful.
Most of LISP’s distinguishing characteristics are covered here.

REFERENCES

[1] John McCarthy. Recursive functions of symbolic expressions and their
computation by machine, part i. Communications of the ACM, 3(4):184–
195, 1960.

[2] John McCarthy. History of LISP, page 173–185. Association for
Computing Machinery, New York, NY, USA, 1978.

[3] Maurizio Gabbrielli and Simone Martini. Functional Programming
Paradigm, pages 335–368. Springer International Publishing, Cham,
2023.

[4] Robert D. Austin. The effects of time pressure on quality in soft-
ware development: An agency model. Information Systems Research,
12(2):195–207, 2001.

[5] Evan Czaplicki. Elm : Concurrent frp for functional guis. 2012.
[6] Vytautas Astrauskas, Aurel Bı́lý, Jonáš Fiala, Zachary Grannan,

Christoph Matheja, Peter Müller, Federico Poli, and Alexander J. Sum-
mers. The prusti project: Formal verification for rust. In Jyotirmoy V.
Deshmukh, Klaus Havelund, and Ivan Perez, editors, NASA Formal
Methods, pages 88–108, Cham, 2022. Springer International Publishing.

[7] Bill Lewis, Richard M Stallman, and Dan LaLiberte. GNU Emacs Lisp
reference manual. Free Software Foundation, 1998.

[8] Wikipedia contributors. Erlang (programming language) — Wikipedia,
the free encyclopedia, 2025. [Online; accessed 25-June-2025].

[9] Abdullah Khanfor and Ye Yang. An overview of practical impacts of
functional programming. In 2017 24th Asia-Pacific Software Engineer-
ing Conference Workshops (APSECW), pages 50–54, 2017.

[10] P. Wadler. How to solve the reuse problem? functional programming.
In Proceedings. Fifth International Conference on Software Reuse (Cat.
No.98TB100203), pages 371–372, 1998.

[11] J. Hughes. Why functional programming matters. The Computer
Journal, 32(2):98–107, 01 1989.

[12] Ismael Figueroa and Romain Robbes. Is functional programming better
for modularity? In Proceedings of the 6th Workshop on Evaluation
and Usability of Programming Languages and Tools, PLATEAU 2015,
page 49–52, New York, NY, USA, 2015. Association for Computing
Machinery.

[13] W.E. Howden. Functional program testing. IEEE Transactions on
Software Engineering, SE-6(2):162–169, 1980.

[14] Gary King. Lift—the lisp framework for testing. Technical report,
Technical report, University of Massachusetts, 2001.

[15] Jim Buchan, Ling Li, and Stephen G. MacDonell. Causal factors, bene-
fits and challenges of test-driven development: Practitioner perceptions.
In 2011 18th Asia-Pacific Software Engineering Conference, pages 405–
413, 2011.

[16] GeeksForGeeks. Run length encoding in python.
https://www.geeksforgeeks.org/python/run-length-encoding-python/,
2024.

[17] Marius Eriksen. Scaling scala at twitter. In ACM SIGPLAN Commercial
Users of Functional Programming, CUFP ’10, New York, NY, USA,
2010. Association for Computing Machinery.

[18] YARON MINSKY and STEPHEN WEEKS. Caml trading – experiences
with functional programming on wall street. Journal of Functional
Programming, 18(4):553–564, 2008.

[19] P. J. Landin. The mechanical evaluation of expressions. The Computer
Journal, 6(4):308–320, 01 1964.

[20] Alonzo Church. The Calculi of Lambda-Conversion. Princeton Univer-
sity Press, Princeton, NJ, USA, 1985.


